K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 giờ trước (15:40)

\(A=\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+...+\dfrac{3^2}{77.80}\)
\(3A=3^2.\left(\dfrac{1}{20.23}+\dfrac{1}{23.26}+...+\dfrac{1}{77.80}\right)\)
\(3A=9.\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(3A=9\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(3A=9\left(\dfrac{4}{80}-\dfrac{1}{80}\right)\)
\(3A=9.\dfrac{3}{80}\)
\(3A=\dfrac{27}{80}\)
\(A=\dfrac{27}{80}:3\)
\(A=\dfrac{27}{80}.\dfrac{1}{3}\)
\(A=\dfrac{9}{80}\)
Ta có: \(\dfrac{9}{80}< 1\)
\(\Rightarrow A< 1\)

9 giờ trước (15:36)

\(A=\dfrac{3^2}{20\cdot23}+\dfrac{3^2}{23\cdot26}+...+\dfrac{3^2}{77\cdot80}\\ A=\dfrac{3^2}{3}\cdot\left[\left(\dfrac{1}{20}-\dfrac{1}{23}\right)+\left(\dfrac{1}{23}-\dfrac{1}{26}\right)+...+\left(\dfrac{1}{77}-\dfrac{1}{80}\right)\right]\\ A=3\cdot\left[\dfrac{1}{20}-\dfrac{1}{80}\right]\\ A=3\cdot\dfrac{3}{80}=\dfrac{9}{80}< 1\)

12 tháng 5 2015

=\(3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3\left(\frac{4}{80}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}\)

\(=\frac{9}{80}\)

12 tháng 5 2015

Katherine Lilly Filbert đúng rồi

8 tháng 5 2017

Ta có
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(A=3^2\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(A=3^2\cdot\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3\cdot\frac{3}{80}=\frac{9}{80}< 1\left(9< 80\right)\)

9 giờ trước (15:47)

A=\(3 \left(\right. \frac{3}{20.23} + \frac{3}{23.26} + \frac{3}{26.29} + . . . + \frac{3}{77.80} \left.\right)\)

A\(= 3 \left(\right. \frac{1}{20} - \frac{1}{23} + \frac{1}{23} - \frac{1}{26} + \frac{1}{26} - \frac{1}{29} + . . . + \frac{1}{77} - \frac{1}{80} \left.\right)\)

\(A = 3 \left(\right. \frac{1}{20} - \frac{1}{80} \left.\right)\)

A\(= 3 \left(\right. \frac{4}{80} - \frac{1}{80} \left.\right)\)

A\(= 3. \frac{3}{80}\)

A\(= \frac{9}{80}\)

\(\frac{9}{80} < 1\)

⇒A<1

29 tháng 3 2018

\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)

\(\frac{A}{3}=\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\)

\(\frac{A}{3}=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\)

\(\frac{A}{3}=\frac{1}{20}-\frac{1}{80}\)

\(\frac{A}{3}=\frac{3}{80}\)

\(A=\frac{3}{80}.3=\frac{9}{80}< 1\)

29 tháng 3 2018

Đặt A=32/20.23+32/23.26+....................+32/77.80

      A=3(3/20.23+3/23.26+.........+3/77.80)

     A=3(1/20-1/23+1/23-1/26+.+1/77-1/80)

     A=3(1/20-1/80)

    A=3.3/80

    A=9/80                       Mà A=9/80<1         =>A<1                   (đpcm)

25 tháng 4 2017

Đặt A= ...(như trên)

=>\(\dfrac{1}{3}A=\dfrac{1}{3}.\left(\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+...+\dfrac{3^2}{77.80}\right)\)

=>\(\dfrac{1}{3}A=\dfrac{3}{20.23}+\dfrac{3}{23.26}+...+\dfrac{3}{77.80}\)

=>\(\dfrac{1}{3}A=\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\\ \)

=>\(\dfrac{1}{3}A=\dfrac{1}{20}-\dfrac{1}{80}\\ =>\dfrac{1}{3}A=\dfrac{4}{80}-\dfrac{1}{80}\\ =>\dfrac{1}{3}A=\dfrac{3}{80}=>A=\dfrac{3}{80}:\dfrac{1}{3}\\ =>A=\dfrac{3}{80}.3=\dfrac{9}{80}< 1\)

Vậy A<1 . Chúc bạn học tốt ! :)

9 giờ trước (15:48)

A=\(3 \left(\right. \frac{3}{20.23} + \frac{3}{23.26} + \frac{3}{26.29} + . . . + \frac{3}{77.80} \left.\right)\)

A\(= 3 \left(\right. \frac{1}{20} - \frac{1}{23} + \frac{1}{23} - \frac{1}{26} + \frac{1}{26} - \frac{1}{29} + . . . + \frac{1}{77} - \frac{1}{80} \left.\right)\)

\(A = 3 \left(\right. \frac{1}{20} - \frac{1}{80} \left.\right)\)

A\(= 3 \left(\right. \frac{4}{80} - \frac{1}{80} \left.\right)\)

A\(= 3. \frac{3}{80}\)

A\(= \frac{9}{80}\)

\(\frac{9}{80} < 1\)

⇒A<1

23 tháng 4 2019

\(3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+....+\frac{3}{77\cdot80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{3}{20}-\frac{3}{80}\)

\(< 1\)

9 giờ trước (15:48)

A=\(3 \left(\right. \frac{3}{20.23} + \frac{3}{23.26} + \frac{3}{26.29} + . . . + \frac{3}{77.80} \left.\right)\)

A\(= 3 \left(\right. \frac{1}{20} - \frac{1}{23} + \frac{1}{23} - \frac{1}{26} + \frac{1}{26} - \frac{1}{29} + . . . + \frac{1}{77} - \frac{1}{80} \left.\right)\)

\(A = 3 \left(\right. \frac{1}{20} - \frac{1}{80} \left.\right)\)

A\(= 3 \left(\right. \frac{4}{80} - \frac{1}{80} \left.\right)\)

A\(= 3. \frac{3}{80}\)

A\(= \frac{9}{80}\)

\(\frac{9}{80} < 1\)

⇒A<1

3 tháng 5 2016

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}<\frac{1}{8}\)

\(=3\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}=\frac{9}{80}\)

\(\Rightarrow\frac{9}{80}=\frac{1}{8}\)

9 giờ trước (15:50)

A=\(3 \left(\right. \frac{3}{20.23} + \frac{3}{23.26} + \frac{3}{26.29} + . . . + \frac{3}{77.80} \left.\right)\)

A\(= 3 \left(\right. \frac{1}{20} - \frac{1}{23} + \frac{1}{23} - \frac{1}{26} + \frac{1}{26} - \frac{1}{29} + . . . + \frac{1}{77} - \frac{1}{80} \left.\right)\)

\(A = 3 \left(\right. \frac{1}{20} - \frac{1}{80} \left.\right)\)

A\(= 3 \left(\right. \frac{4}{80} - \frac{1}{80} \left.\right)\)

A\(= 3. \frac{3}{80}\)

A\(= \frac{9}{80}\)

\(\frac{9}{80}<\frac18\)

⇒A\(<\frac18\)

6 tháng 5 2019

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

6 tháng 5 2019

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

6 tháng 5 2019

Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)

=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))

=>A=\(\frac{1}{3}.\frac{3}{80}\)

=>A=\(\frac{1}{80}\)

Do \(\frac{1}{80}\)<\(\frac{1}{9}\)

Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)

6 tháng 5 2019

ko bt

7 tháng 8 2019

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{27.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

7 tháng 8 2019

oh oh oh oh

29 tháng 4 2015

3^2= 9 
Vậy thì sẽ là:
9/ 20.23+ 9/ 23.26+...9/77.80
cách nhau 3 bỏ 3 ra ngoài
= 3(3/20.23+...3/77.80)
=3(3/20-3/23+3/23-3/26+.....+3/77-3/80)
=3(3/20-3/80)
=3. 9/80
=27/80<1

27 tháng 4 2017

32=9

\(\frac{3^2}{20.23}\)+\(\frac{3^2}{23.26}\)+...+\(\frac{3^2}{77.80}\)

=\(\frac{9}{20.23}\)+\(\frac{9}{23.26}\)+...+\(\frac{9}{77.80}\)

=3(\(\frac{3}{20.23}\)+\(\frac{3}{23.26}\)+...+\(\frac{3}{77.80}\))

=3(\(\frac{1}{20}\)-\(\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\))

=3(\(\frac{1}{20}-\frac{1}{80}\))

=3(\(\frac{4}{80}-\frac{1}{80}\))

=3.\(\frac{3}{80}\)

=\(\frac{9}{80}\)<1

Vậy\(\frac{9}{80}< 1\)