![](/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
\(x^4+4x^3+5x^2-4x+4=0\)
\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)
\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)
Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)
Mà ko cùng một lúc tồn tại 2 giá trị của x
\(\Rightarrow\)Phương trình vô nghiệm
Vậy ...
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)
\(\Leftrightarrow-5x^2-9x+2=0\)
\(\Leftrightarrow-5x^2-10x+x+2=0\)
\(\Leftrightarrow-5x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(-5x+1\right)\left(x+2\right)=0
\)
\(\Leftrightarrow\left(-5x+1\right)=0\) Hoặc \(x+2=0\)
\(\Leftrightarrow x=\frac{1}{5}\)Hoặc \(x=-2\)
(x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>x+2=0 hoặc 1-5x=0
<=>x=-2 hoặc x=1/5
![](/images/avt/0.png?1311)
\(\left(x-2\right)\left(4x+3\right)=x^2-4x+4\)
\(\Leftrightarrow\left(x-2\right)\left(4x+3\right)=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)\left(4x+3\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+3-x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-5}{3}\end{cases}}\)
Vậy....
![](/images/avt/0.png?1311)
pt <=> x^4+8x-4x^3-5 = 0
<=> (x^4-x^3)-(3x^3-3x)+(5x-5) = 0
<=> x^3.(x-1)-3.x.(x-1).(x+1)+5.(x-1) = 0
<=> (x-1).(x^3-3x^2-3x+5) = 0
<=> (x-1).[(x^3-x^2)-(2x^2-2x)-(5x-5)] = 0
<=> (x-1)^2.(x^2-2x-5) = 0
<=> x-1=0 hoặc x^2-2x-5=0
<=> x=1 hoặc x = \(1+-\sqrt{6}\)
Vậy ...............
Tk mk nha
![](/images/avt/0.png?1311)
\(-x^5+4x^4=-12x^3\)
\(\Leftrightarrow x^5-4x^4-12x^3=0\)
\(\Leftrightarrow x^3\left(x^2-4x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4x-12=0\left(1\right)\end{cases}}\)
\(Pt\left(1\right)\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
Vậy \(x\in\left\{-2;0;6\right\}\)
`x^4 = 4x - 3`
`x^4 - 4x + 3 = 0`
`(x - 1)(x^3 + x^2 + x - 3) = 0`
`(x - 1)(x - 1)(x^2 + 2x + 3) = 0`
`(x - 1)^2(x^2 + 2x + 3) = 0`
Suy ra: `x - 1 = 0 (` Biết: `x^2 + 2x + 3 = x^2 + 2 . x . 1/2 + 1/4 + 7/4 = (x + 1/2)^2 + 7/4 >= 0 \ne 0 )`
Do đó: `x = 1`
Laughing My Ass Off