Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Đến đây dễ rồi
b)
\(\left(\frac{x}{3}\right)^2=\frac{x}{3}\cdot\frac{x}{3}=\frac{x}{3}\cdot\frac{y}{4}=\frac{xy}{3\cdot4}=\frac{48}{12}=4=\left(\pm2\right)^2\)
TH1 : \(\frac{x}{3}=\frac{y}{4}=2\)
Sau đó tìm x và y
TH2 : \(\frac{x}{3}=\frac{y}{4}=-2\)
Sau đó lại tìm x và y
Sau cùng kết luận
Học tốt
Đặt x/a=y/b=z/c=k
⇒x=ka (1)
y=kb (2)
z=kc (3)
Ta có
a²/x+b²/y+c²/z (4)
Thay (1);(2);(3)vào (4) ta được:
a²/x+b²/y+c²/z
=a²/ka+b²/kb+c²/kc
=a/k+b/k+c/k
=(a+b+c)/k (*)
Lại có:
(a+b+c)²/(x+y+z) (5)
Thay (1);(2);(3) vào (5) ta được:
(a+b+c)²/(x+y+z)
=(a+b+c)²/(ka+kb+kc)
=(a+b+c)²/k(a+b+c)
=(a+b+c)/k (**)
Từ (*)và(**)
⇒a²/x+b²/y+c²/z=(a+b+c)²/(x+y+z)
Vậya²/x+b²/y+c²/z=(a+b+c)²/(x+y+z) khi x/a=y/b=z/c
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)
Sửa đề cmr a=2018 hoặc b=2018 hoặc c=2018, đây là toán 8
\(a+b+c=2018\Rightarrow\frac{1}{a+b+c}=\frac{1}{2018}\)
=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-ab\left(a+b\right)\)
<=>\(\left(a+b\right)\left(ca+bc+c^2\right)+ab\left(a+b\right)=0\)
<=>\(\left(a+b\right)\left(ca+bc+c^2+ab\right)=0\)
<=>\(\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
<=>\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=>a+b=0 hoặc b+c=0 hoặc c+a=0
Mà a+b+c=2018
=>c=2018 hoặc a=2018 hoặc b=2018 (đpcm)
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
Ta có: x , y > 0
Mà ta cần CM: \(\frac{x}{y}\le\frac{x+2019}{y+2019}\)
Ta dễ dàng nhìn thấy \(\frac{x}{y}=\frac{x}{y}\)
Mà đề là: \(\frac{x+2019}{y+2019}\)nên dấu < trong \(\frac{x}{y}< \frac{x+2019}{y+2019}\)là điều đương nhiên
Nhưng đề lại có thêm một yêu cầu là \(\frac{x}{y}\le\frac{x+2019}{y+2019}\). Ta nhận thấy rằng không có bất kì số nào thỏa mãn ,trừ 0. Nhưng đề cho x,y > 0 => Đề sai nhé! Chép lại đề giùm đi bạn
Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra x = y = z .
mặt khác, theo giả thiết: x2017 = y2005 Nên x = y = 1. Vì :
- Nếu x = y > 1 : x2017> x2005 = y2005
- Nếu x = y < 1 thì : x2017 < x2005 = y2005
Vậy x = y = z = 1
xạo quá
Đề phải cho x < = y chứ bạn ơi
Xét: x.(y+2018)-y.(x+2018)
= xy+2018x-xy-2018y
= 2018,(x-y) < = 0
=> x.(y+2018) < = y.(x+2018)
=> x/y < = x+2018/y+2018
=> ĐPCM
k mk nha