![](/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
Ta có
<br class="Apple-interchange-newline"><div></div>2x3y =−13
=><br class="Apple-interchange-newline"><div></div>-2x1 =3y3
Áp dụng tính chất dãy Tỉ số bằng nhau ,ta có
-2x/1= 3y/3 = (-2x+3y)/( 1+3) = 7/4
=> x= -7/8, y=7/4
Ta có x/5 = y/3
=> x^2/25 =y^2/ 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x^2 /25 = y^2/9 = (x^2 -y^2)/(25- 9)= 1/4
=> x = 5/2, y = 3/2 (x,y>0)
![](/images/avt/0.png?1311)
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)
Tìm các số x , y biết :
a) \(\frac{x}{3}=\frac{y}{4},2x+5y=10\)
b)\(\frac{2x}{5}=\frac{3y}{7},x+y=29\)
![](/images/avt/0.png?1311)
b) Theo đề ta có:
\(\frac{2x}{5}=\frac{3y}{7}\)
=> \(\frac{2x}{30}=\frac{3y}{42}\)
Hay:\(\frac{x}{15}=\frac{y}{14}\) và x+y= 29
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{14}=\frac{x+y}{15+14}=\frac{29}{29}=1\)
=> \(\frac{x}{15}=1\)
\(\frac{y}{14}=1\)
=> x = 15
y = 14
bạn kiểm tra lại thử giúp mình nha! ^-^!
x/3=y/4
=>2x/6=5y/20 và 2x+5y=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
2x/6 = 5y/20=2x+5y/6+20=10/26=5/13
=>x=5/13 . 3=15/13
y=5/13 . 4=20/13
b)2x/5 = 3y/7=>3x/7,5=3y/7=>x/7,5=y/7 và x+y=29
Áp dụng t/c dãy tỉ số bằng nhau ta có:
x/7,5=y/7=x+y/7,5+7=29/14,5=2
=>x=2.7,5=15
y=2.7=14
![](/images/avt/0.png?1311)
a) Ta có : \(2x+5y=10\) (1)
\(\frac{x}{y}=34\Leftrightarrow x=34y\)
Thay \(x=34y\) vào (1), ta được :
\(68y+3y=10\)
\(\Leftrightarrow71y=10\)
\(\Leftrightarrow y=\frac{10}{71}\)
\(\Leftrightarrow x=\frac{340}{71}\)
Vậy \(\left(x;y\right)=\left(\frac{340}{71};\frac{10}{71}\right)\)
b) Ta có : \(\frac{2x}{3y}=-\frac{1}{3}\)\(\Leftrightarrow\frac{-1}{2x}=\frac{3}{3y}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(-\frac{1}{2x}=\frac{3}{3y}=\frac{-1+3}{2x+3y}=\frac{2}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1:\frac{2}{7}=-\frac{7}{2}\Leftrightarrow x=-\frac{7}{4}\\3y=3:\frac{2}{7}=\frac{21}{2}\Leftrightarrow y=\frac{7}{2}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-\frac{7}{4};\frac{7}{2}\right)\)
c) Ta có : \(\frac{x}{3}=\frac{y}{7}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{49}=\frac{xy}{21}=\frac{84}{21}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4.9=36\Leftrightarrow x=\pm6\\y^2=4.49=196\Leftrightarrow y=\pm14\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(6;14\right);\left(-6;-14\right)\right\}\)
\(c,\frac{x}{3}=\frac{y}{7}\) và \(x.y=84\)
Đặt x . y = k ( k \(\in\) N✳)
Có x . y = 84 nên 3k . 7k = 84
21k = 84
k = 4
\(\Rightarrow k=4\) hoặc \(k=-4\)
Với \(k=4\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)
Với \(k=-4\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
Vậy x = 12 , y = 28
hoặc x = -12 , y = -28
a, \(\frac{x}{y}=34\Leftrightarrow\frac{x}{34}=\frac{y}{1}\Rightarrow\frac{2x}{68}=\frac{5y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{68}=\frac{5y}{5}=\frac{2x+5y}{68+5}=\frac{10}{73}\)
\(\Rightarrow\left\{{}\begin{matrix}2x=\frac{680}{73}\\5y=\frac{50}{73}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{340}{73}\\y=\frac{250}{73}\end{matrix}\right.\)
![](/images/avt/0.png?1311)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{-20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)
=> \(\hept{\begin{cases}\frac{x}{-10}=-2\\\frac{y}{6}=-2\\\frac{z}{3}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.\left(-10\right)=20\\y=-2.6=-12\\z=-2.3=-6\end{cases}}\)
Vậy ...
b) Ta có: -2x = 5y => x/5 = y/-2
Áp dụng t/c của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ...
a. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)
=> x = -2.(-10) = 20
y = -2.6 = -12
z = -2.3 = -6
b. -2x = 5y => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5+\left(-2\right)}=\frac{30}{3}=10\)
=> x = 10.5 = 50
y = 10.(-2) = -20
c. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-3}=\frac{y}{-7}=\frac{2x+4y}{-6+\left(-28\right)}=\frac{68}{-34}=-2\)
=> x = -2.(-3) = 6
y = -2.(-7) = 14
d. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-4z}{2+18-12}=\frac{-24}{8}=-3\)
=> x = -3
y = -3.6 = -18
z = -3.3 = -9
![](/images/avt/0.png?1311)
Lời giải:
Đặt $\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}=t$
$\Rightarrow x=\frac{5}{2}t; y=\frac{10}{3}t; z=12t$
Khi đó:
$x+y+z=109$
$\Leftrightarrow \frac{5}{2}t+\frac{10}{3}t+12t=109$
$\Leftrightarrow \frac{107}{6}t=109\Rightarrow t=\frac{654}{107}$
$\Rightarrow x=\frac{5}{2}t=\frac{1635}{107}; y=\frac{10}{3}t=\frac{2180}{107}; z=12t=\frac{7848}{107}$
![](/images/avt/0.png?1311)
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{48}=\frac{5x+y-2z}{50+6-48}=\frac{28}{8}=\frac{7}{2}\)
\(\Rightarrow x=\frac{7}{2}.10=35\)
\(y=\frac{7}{2}.6=21\)
\(z=\frac{7}{2}.24=84\)
b) Ta có: \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
=> x = 3.15 = 45
y = 3.20 = 60
z = 3.28 = 84
c) Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2.10 = 20
y = 2.15 = 30
z = 2.21 = 42
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)
=> 12x = 216 => x =18
12y = 192 => y = 16
12z = 180 => z = 15
e) \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2}=\frac{2x-2}{2};\frac{y-2}{3}=\frac{3\left(y-2\right)}{3}=\frac{3y-6}{3}\)
=> 2x-2/4 = 3y-6/9 = z-3/4
=> (2x-2+3y-6-z+3)/(4+9-4) = (49-5)/9 = 44/9
=> x-1 = 44/9 .2 = 88/9
x = 97/9
=> y-2 = 44/9 . 3 = 44/3
y = 50/3
=> z - 3 = 44/9 . 4 = 176/9
z = 203/9
Vậy ...
![](/images/avt/0.png?1311)
\(\dfrac{2x}{3y}=\dfrac{3}{3}\Rightarrow\dfrac{-2x}{-3}=\dfrac{3y}{3}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{-2x}{-3}=\dfrac{3y}{3}=\dfrac{-2x+3y}{-3+3}=\dfrac{7}{0}\)(loại,ko thỏa mãn)
Vậy \(x;y\in\varnothing\)
`2x = 3y`
Ta có :
`2x = 3y => x/3 = y/2`
Áp dụng tính chất dãy tỉ số bằng nhau , ta được :
`x/3 = y/2 = (x+y)/(3+2) = (10)/(5) = 2`
`=> x/3 = 2 => 2.3=6`
`y/2 = 2 => y = 2.2=4`
Vậy...