\(\frac{-4}{6}>\frac{-2}{.\ldots}>\frac{-4}{9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

A>5/3>5/4=>A>5/4 chứ mị

14 tháng 5 2019

mk nhìn nhầm

10 tháng 2 2019

\(\frac{x-2}{4}=\frac{-9}{2-x}\)

\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)

\(\Rightarrow\left(x-2\right)^2=36\)

\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)

\(\frac{x}{15}=\frac{3}{y}\)

\(\Rightarrow xy=45\)

\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)

Xét bảng 

x1(loại)-13(loại)-35(loại)-545-45(loại)15-15(loại)9-9(loại)
y45(loại)-4515(loại)-159(loại)-91-1(loại)3-3(loại)5-5(loại)

Vậy.......................................

d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)

\(\Rightarrow x=4.2=8\)

     \(y=3.2=6\)

29 tháng 3 2016

\(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

cm tt => đpcm 

\(\frac{1}{2^2}<\frac{1}{1.2}=1-\frac{1}{2}\)

cmtt =>...................

29 tháng 3 2016

ta có A=1/2^2+1/3^2+1/4^2+...+1/9^2

mà 1/2^2>1/2.3=1/2-1/3

      1/3^2>1/3.4=1/3-1/4

      1/4^2>1/4.5=1/4-1/5

........

      1/9^2>1/9.10=1/9-1/10

=> 1/2^2+1/3^2+1/4^2+...+1/9^2>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10

=>1/2^2+1/3^2+1/4^2+...+1/9^2>1/2-1/10=2/5

vậy A>2/5 *

ta có 1/2^2<1/1.2=1-1/2

         1/3^2<1/2.3=1/2-1/3

          1/4^2<1/3.4=1/3-1/4

.......

           1/9^2<1/8.9=1/8-1/9

=>1/2^2+1/3^2+1/4^2+...+1/9^2<1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9

=>1/2^2+1/3^2+1/4^2+...+1/9^2<1-1/9=8/9

vậy A<8/9 **

từ *,** => 8/9>A>2/5 (đpcm)

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)

18 tháng 4 2020

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

có \(\frac{1}{2\cdot3}< \frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot4}< \frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot5}< \frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{9\cdot10}< \frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}>A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow1-\frac{1}{9}>A>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow\frac{8}{9}>A>\frac{2}{5}\)

20 tháng 4 2020

Bạn ơi, sai rồi, mình k nhầm
làm sao mà \(\frac{1}{2^2}< \frac{1}{1.2}\)được

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)