Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025
Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: ( 2025 - 1) : 1 + 1 = 2025
Vì 2025 : 4 = 506 dư 1
Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó
A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025
A = 0 + 0 +...+ 0 + 2025
A = 2025
A = 18:26+(-5):27+(-22):86+12:39+(-32):43 = 9:13+(-5):27+(-11):43+4:13+(-32):43 = (9:13+4:13)+[(-11):43+(-32):43]+(-5):27 = 1+(-1)+5:27 = -5:27
B =(-10):12+8:15+(-19):56+3:(-18)+28:60 = (-5):6+8:15+(-19):56+1:(-6)+7:15 = [(-5):6+1:(-6)]+(8:15+7:15)+(-19):56 = (-1)+1+(-19):56 = (-19) :56
\(A=8\frac{4}{17}-\left(2\frac{5}{9}+3\frac{4}{17}\right)\)
\(A=8\frac{4}{17}-2\frac{5}{9}-3\frac{4}{17}\)
\(A=\left(8\frac{4}{17}-3\frac{4}{17}\right)-\frac{23}{9}\)
\(A=5-\frac{23}{9}\)
\(A=\frac{45}{9}-\frac{23}{9}\)
\(A=\frac{22}{9}\)
\(A=8\frac{4}{7}-2\frac{5}{9}-3\frac{4}{7}\)
\(A=\left(8\frac{4}{7}-3\frac{4}{7}\right)-2\frac{5}{9}\)
\(A=5-2\frac{5}{9}\)
\(A=4+1-2\frac{5}{9}\)
\(A=4+1-\frac{23}{9}\)
\(A=4+\frac{-14}{9}\)
\(A=1\frac{5}{9}\)
\(\frac{2}{x}=\frac{x}{8}\)
\(\Rightarrow2.8=x.x\Rightarrow16=x^2\)
\(\Rightarrow\)x = 4 hoặc x =-4
(21-43)-(57-36)-(64+21)
=21-43-57+36-64-21
=21+(-43)+(-57)+36+(-64)+(-21)
=[21+(-21)]+[(-43)+(-57)]+[36+(-21)]+(-64)
=0+(-100)+15+(-64)
=-149
*** nhe
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}\)
\(=\frac{10}{99}\)
\(\frac{4^8.3^{12}.27^2}{6^{12}.9^3}\)
= \(\frac{\left(2^2\right)^8.3^{12}.27^2}{\left(2.3\right)^{12}.\left(3^2\right)^3}\)
= \(\frac{2^{16}.3^{12}.27^2}{2^{12}.3^{12}.27^2}\)
= \(\frac{2^{16}}{2^{12}}\)= 24 = 16
\(2024+202,4+20,24\cdot43+0,2024\cdot3700\)
\(=2024+\frac{2024}{10}+\frac{2024\cdot43}{100}+\frac{2024.3700}{10000}\)
\(=2024\left(1+\frac{1}{10}+\frac{43}{100}+\frac{37}{100}\right)\)
\(=2024\left(1+\frac{1}{10}+\frac{80}{100}\right)=2024\left(\frac{100+10+80}{100}\right)\)
\(=2024\cdot\frac{190}{100}=1012\cdot\frac{19}{5}=\frac{19228}{5}=3845,6\)