![](/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
a.ta có :4^2.4^3/2^10=2^4.2^6/2^10=2^10/2^10=1
b. ta co :(0,6)^5/(0,2)^5=(0,6/0,2)^5=3^5=243
![](/images/avt/0.png?1311)
a) \(-\frac{8}{18}-\frac{15}{27}\)
\(=-\frac{4}{9}-\frac{5}{9}\)
\(=-\frac{9}{9}=-1\)
b) \(\frac{1}{2}\cdot\sqrt{100-\sqrt{\frac{1}{16}+\left(\frac{1}{3}\right)^0}}\)
\(=\frac{1}{2}\cdot\sqrt{100-\sqrt{\frac{1}{16}+1}}\)
\(=\frac{1}{2}\sqrt{100-\sqrt{\frac{17}{16}}}\)
Cái này ra số thập phân dài lắm
c) \(\frac{5^4\cdot20^4}{25^5\cdot4^5}=\frac{5^4\cdot5^4\cdot4^4}{5^5\cdot5^5\cdot4^5}=\frac{1}{100}\)
a) \(\frac{-8}{18}-\frac{15}{27}\)
\(=\frac{-4}{9}-\frac{5}{9}\)
\(=\frac{-9}{9}\)
\(=-1\)
b) \(\frac{1}{2}\sqrt{100-\sqrt{\frac{1}{16}+\left(\frac{1}{3}\right)^0}}\)
\(=\frac{1}{2}\sqrt{100-\sqrt{\frac{1}{16}+1}}\)
\(=\frac{1}{2}\sqrt{100-\sqrt{\frac{17}{16}}}\)
\(=\sqrt{\frac{1}{4}.100-\frac{1}{4}\sqrt{\frac{17}{16}}}\)
\(=\sqrt{25-\frac{\sqrt{17}}{16}}\)
c) \(\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{5^4.2^8.5^4}{5^{10}.2^{10}}\)
\(=\frac{5^8.2^8}{2^{10}.5^{10}}\)
\(=\frac{10^8}{10^{10}}\)
\(=\frac{1}{10^2}\)
\(=\frac{1}{100}\)
![](/images/avt/0.png?1311)
a) \(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(5.2^2\right)^4}{\left(5^2\right)^5.\left(2^2\right)^5}=\frac{5^4.5^4.2^8}{5^{10}.2^{10}}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}.\)
Chúc bạn học tốt!
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
Bài làm
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(=\left(\frac{3}{7}\right)^2+\left(\frac{1}{2}\right)^2\)
\(=\frac{9}{49}+\frac{1}{4}\)
\(=\frac{36}{196}+\frac{49}{196}\)
\(=\frac{85}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(=\left(-\frac{1}{12}\right)^2\)
\(=\frac{1}{144}\)
\(c,\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{5^4.\left(5.4\right)^4}{\left(5.5\right)^5.4^5}\)
\(=\frac{5^4.5^4.4^4}{5^5.5^5.4^5}\)
\(=\frac{1}{5.5.4}\)
\(=\frac{1}{100}\)
~ Check đúng cho minh nha. ~
# Học tốt #
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(< =>\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
\(< =>\left(\frac{13}{14}\right)^2\)
\(< =>\frac{169}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(< =>\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
\(< =>\left(\frac{-1}{12}\right)^2\)
\(< =>\frac{-1}{144}\)
\(c,\frac{5^4\cdot20^4}{25^5\cdot4^5}\)
\(< =>\frac{25^2\cdot\left(4\right)^4\cdot\left(5\right)^4}{25^5\cdot4^5}\)
\(< =>\frac{1\cdot1\cdot\left(5\right)^4}{25^3\cdot4}\)
\(< =>\frac{1\cdot25^2}{25^3\cdot4}\)
\(< =>\frac{1}{25\cdot4}\)
\(< =>\frac{1}{100}\)
![](/images/avt/0.png?1311)
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
![](/images/avt/0.png?1311)
làm cho 1 cái những cái sau tương tự mà lm nha bạn
\(\frac{x}{5}=-\frac{6}{7}\)
\(=>7x=-6\cdot5\)
\(7x=-30\)
\(x=-\frac{30}{7}\)
\(\frac{x}{2}=-\frac{8}{-x}\)
\(=>\frac{x}{2}=\frac{8}{x}\)
\(=>xx=8\cdot2\)
\(x^2=16\)
\(=>x\in\left\{-4;4\right\}\)
\(\dfrac{2^8\cdot2^{18}}{8^5\cdot4^6}=\dfrac{2^8\cdot2^{18}}{\left(2^3\right)^5\cdot\left(2^2\right)^6}=\dfrac{2^8\cdot2^{18}}{2^{15}\cdot2^{12}}\\ =\dfrac{2^{26}}{2^{27}}=\dfrac{1}{2}=0,5\)
=0,5