K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BCDE là tứ giác nội tiếp

2:

ΔAEH vuông tại E

mà EN là đường trung tuyến

nên \(EN=\dfrac{AH}{2}\left(3\right)\)

ΔADH vuông tại D

mà DN là đường trung tuyến

nên \(DN=\dfrac{AH}{2}\left(4\right)\)

Từ (3),(4) suy ra NE=ND

 ΔEBC vuông tại E

mà EM là đường trung tuyến

nên \(EM=\dfrac{BC}{2}\left(1\right)\)

ΔDBC vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{BC}{2}\left(2\right)\)

Từ (1),(2) suy ra ME=MD

Xét ΔNEM và ΔNDM có

NE=ND

EM=DM

NM chung

Do đó: ΔNEM=ΔNDM

=>\(\widehat{NEM}=\widehat{NDM}\)

8 tháng 1

tặng coin cho tui đi tui tặng lại cho

17 tháng 3 2023

Giải

1: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

2: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

góc BAD chung

Do đó:ΔADB\(\sim\)ΔAEC

Suy ra: AD/AE=AB/AC

hay AD/AB=AE/AC

Xét ΔADE và ΔABC có 

AD/AB=AE/AC
góc DAE chung

Do đó: ΔADE\(\sim\)ΔABC

hay \(\widehat{ADE}=\widehat{ABC}\)

16 tháng 5 2022

cảm ơn nhaa

 

a: Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó:BCDE là tứ giác nội tiếp

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{A}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}=\dfrac{2\cdot AM}{2\cdot AN}=\dfrac{AM}{AN}\)

hay \(AE\cdot AM=AN\cdot AD\)

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}CEB=BDC=90.

Suy ra 44 điểm B,E, D, CB,E,D,C cùng thuộc đường tròn đường kính CBCB nên tứ giác BCDEBCDE nội tiếp.

Có tứ giác BCDEBCDE nội tiếp nên \widehat{DCE} = \widehat{DBE}DCE=DBE (22 góc nội tiếp cùng chắn cung DEDE) hay \widehat{ACQ} = \widehat{ABP}ACQ=ABP.

Trong đường tròn tâm (O)(O), ta có \widehat{ACQ}ACQ là góc nội tiếp chắn cung AQAQ và \widehat{ABP}ABP nội tiếp chắn cung APAP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP.

2.

(O)(O) có \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP nên \widehat{ABP} = \widehat{ABQ}ABP=ABQ hay \widehat{HBE} = \widehat{QBE}HBE=QBE.

Ta chứng minh được BEBE vừa là đường cao, vừa là phân giác của tam giác HBQHBQ nên EE là trung điểm của HQHQ.

Chứng minh tương tự DD là trung điểm của HPHP \Rightarrow DEDE là đường trung bình của tam giác HPQHPQ \Rightarrow DE // PQDE//PQ (1).

Do \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP nên AA là điểm chính giữa cung PQPQ \Rightarrow OA \perp PQOAPQ (2).

Từ (1) và (2) suy ra OA \perp DEOADE.

3.

Kẻ đường kính CFCF của đường tròn tâm (O)(O), chứng minh tứ giác ADHEADHE nội tiếp đường tròn đường kính AHAH.

Chứng minh tứ giác AFBHAFBH là hình bình hành, suy ra BF=AHBF=AH.

Trong đường tròn (O)(O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ}CAB=CFB=60 (2 góc nội tiếp cùng chắn cung BCBC). Chỉ ra tam giác BCFBCF vuông tại BB và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6BF=CF.cos60=R=6 cm.

Đường tròn ngoại tiếp tứ giác ADHEADHE cũng là đường tròn ngoại tiếp tam giác ADEADE.

Gọi rr là bán kính đường tròn ngoại tiếp tam giác ADEADE.

Suy ra 2r=AH=BF=62r=AH=BF=6 cm.

Vậy r=3r=3 cm.

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: Xét ΔHQB và ΔHPC có

góc HQB=góc HPC

góc QHB=góc PHC

=>ΔHQB đồng dạng với ΔHPC

=>HQ/HP=HB/HC

=>HQ*HC=HP*HB

c: kẻ tiếp tuyến Ax

=>góc xAC=góc ABC=góc ADE

=>Ax//ED

=>OA vuông góc DE

1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang