K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2024

A= 4+22+23+...+22000

A= 22.2++23+24...+22000

A=23+23+24+25+...+22000

A=24+24+25+26+...+22000

...

A=22000+22000=22001

13 tháng 9 2024

B=7+73+75+...+7199

=> 49B= 73+75+77+...+7199+7201

=> 49B-B=73+75+77+...+7199+7201-(7+73+75+...+7199)

48B=7201-7

B=(7201-7)/48

đúng thì tick nha

12 tháng 12 2023

1; 73.52.54.76:(55.78)

= (73.76).(52.54) : (55.78)

= 79.56: (55.78)

= (79:78).(56:55)

= 7.5

= 35

12 tháng 12 2023

2; 33.a7.3.a2:(34.a6)

= (33.3).(a7.a2): (34.a6)

= 34.a9: (34.a6)

= (34:34).(a9:a6)

= a3

18 tháng 2 2024

ko bt

18 tháng 2 2024

Đc r

27 tháng 9 2021

a) \(13\times17-256:16+14:7-1\)

\(=221-16+2-1\)

\(=206\)

17 tháng 8 2022

a) (5 mũ 2001- 5 mũ 2000):5 mũ 2000

= ( 5 mũ 1 . 5 mũ 2000-5 mũ 2000) : 5 mũ 2000

=5 mũ 2000 . ( 5 mũ 1 - 1) : 5 mũ 2000

= 5 mũ 2000 . 4 : 5 mũ 2000

= ( 5 mũ 2000 : 5 mũ 2000 ) .4

=                 5 mũ 0  .  4

=                     1 . 4      =  4

b)

20 tháng 9 2017

Ta có:

A = 1 + 3 + 32 + 33 + ... + 36

3A = 3 + 32 + 33 + ... + 37

3A - A = (3 + 32 + 33 + ... + 37) - 1 + 3 + 32 + 33 + ... + 36

2A = 37 - 1

Ta lại có:

B = (37 - 1) : 2

2B = 37 - 1

Vì 2A = 2b nên A = B.

20 tháng 9 2017

giúp mk bài dưới với ạ

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn