Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)
Ta có:
VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )
VT = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))
VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)
VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)
VT = \(\dfrac{n+1}{2n+3}\) = VP (đpcm)
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2x+3\right)}=\frac{n+1}{2n+3}\)
=>\(2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2n+3\right)}\right)=2x\frac{n+1}{2n+3}\)
=>\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}=\frac{2n+2}{2n+3}\)
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
=>\(1-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
=>\(\frac{2n+2}{2n+3}=\frac{2n+2}{2n+3}\)
=>.....
\(\frac{8n+27}{2n+3}\) là số tự nhiên
Nên 8n + 27 chia hết cho 2n + 3
4(2n + 3) + 15 chia hết cho 2n + 3
4(2n + 3) chia hết cho 2n + 3
=> 15 chia hết cho 2n + 3
2n + 3 thuộc U(15) = {1;3;5;15}
2n + 3 = 1 => 2n = -2 ; n = -1 (loại)
2n + 3 = 3 => 2n = 0 ; n = 0
2n + 3 = 5 => 2n = 2 ; n = 1
2n + 3 = 15 => 2n = 12 ; n = 6
Vậy n thuộc {0;1;6}
a. n - 7 chia het cho n - 2
=> n - 7 . n - 2 chia het cho n - 2
=> n . ( 7 - 2 ) chiua het cho n - 7
=> 5 chia het cho n - 2
=> n - 2 \(\in\) Ư(5)
Ư(5) = { 1;5}
=> n - 2 \(\in\) 1 ; 5
=> n \(\in\) 3;7
Vì 2n+3 chia hết cho 2n+1
hay (2n+1)+2 chia hết cho 2n+1
Mà 2n+1 chia hết cho 2n+1
=>2 chia hết cho 2n+1
=>2n+1 \(\in\)Ư(2)={1;2}
Mà 2n+1 là số lẻ
=>2n+1=1
2n=1-1
2n=0
n=0:2
n=0
Vậy n=0
\(8n+1⋮2n+1\)
\(\Rightarrow8n+1-4\left(2n+1\right)⋮2n+1\)
\(\Rightarrow8n+1-8n-4⋮2n+1\)
\(\Rightarrow-3⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{-1;0;-2;1\right\}\left(n\in N\right)\)
Yêu cầu của đề?