K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

a) \(\left(x-4\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

Vậy \(x\in\left\{-3;4\right\}\)

b)\(\left(x^2+16\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+16=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{-16}\\x=\sqrt{16}=4\end{cases}}\)

Vậy \(x=4\)

22 tháng 1 2019

\(\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

\(\left(x^2+16\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+16=0\\x^2-16=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-16\left(loại\right)\\x^2=16\end{cases}}\Rightarrow x=\left(\pm4\right)^2\)

\(\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)

24 tháng 4 2020

a) Xét TH1; \(\hept{\begin{cases}x-4>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>4\\x>-3\end{cases}\Rightarrow}x>4.}\)

TH2: \(\hept{\begin{cases}x-4< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 4\\x< -3\end{cases}\Leftrightarrow}x< -3.}\)

b)ta thấy x-2<x+1 với mọi x

\(\Rightarrow\left(x-2\right)\left(x+1\right)< 0\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}.}}\)

=> -1<x<2

24 tháng 4 2020

\(\Leftrightarrow-1< x< 2.\)

chăng hiểu s olm lại ko hiện phép kia

2 tháng 8 2018

\(1,\left(x-3\right).\left(x+4\right)>0\)

<=> x - 3 và x + 4 cùng dấu 

<=> TH1 : 

\(\hept{\begin{cases}x-3>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x>-4\end{cases}\Leftrightarrow x>3}}\)

TH2 : 

\(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -4\end{cases}\Leftrightarrow x< -4}}\)

Vậy với x>3 hoặc x<-4 thì ( x-3) . ( x +4 ) >0

\(2,\left(x-5\right).\left(x+7\right)< 0\)

<=> x - 5 và x + 7 khác dấu 

<=> TH1 : 

\(\hept{\begin{cases}x-5>0\\x+7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>5\\x< -7\end{cases}}}\)( vô lí )

TH2 : 

\(\hept{\begin{cases}x-5< 0\\x+7>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 5\\x>-7\end{cases}\Leftrightarrow-7< x< 5}}\)

Vậy với -7 < x < 5 thì ( x - 5 ) . ( x + 7)<0

\(3,\left(x^2+1\right).\left(x-3\right)>0\)

<=> x^2 + 1 và x -3 cùng dấu 

<=> TH1 : 

\(\hept{\begin{cases}x^2+1>0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>-1\\x>3\end{cases}\Leftrightarrow}x>3}\)

TH2 : 

\(\hept{\begin{cases}x^2+1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2< -1\\x< 3\end{cases}\Leftrightarrow x^2< -1}}\)

Vậy với x> 3 hoặc x^2 < -1 thì ( x^2 + 1 ) .( x - 3 ) >0

19 tháng 1 2017

Đây chỉ là giải ra điều kiện thôi, tìm x thì b tự tìm, cái này chắc ko cần m giải nữa nhỉ?

a) \(\Leftrightarrow\hept{\begin{cases}x-2>0\\7-x>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0+2\\x>7-0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\x>7\end{cases}}\)

b) \(\Leftrightarrow\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}}\)

c) \(\Leftrightarrow\hept{\begin{cases}x^2-13< 0\\x^2-17< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< 0+13\\x^2< 0+17\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< 13\\x^2< 17\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< \sqrt{13}\\x< \sqrt{17}\end{cases}}\)

19 tháng 1 2017

Cho từng cái > hoặc < 0 rồi giải ra điều kiện của x thôi b

Gần giống bài lúc nãy

15 tháng 8 2017

a, Do (x - 2)(5 - x) > 0
=> x - 2; 5 - x cùng dấu
Nếu \(\left\{{}\begin{matrix}x-2>0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 5\end{matrix}\right.\)<=> 2 < x < 5
Nếu \(\left\{{}\begin{matrix}x-2< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>5\end{matrix}\right.\)(vô lý)
Vậy x = 3; 4
b, Do (x - 3)(x - 7) < 0
=> x - 3; x - 7 khác dấu
Nếu \(\left\{{}\begin{matrix}x-3>0\\x-7< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 7\end{matrix}\right.\)<=> 3 < x < 7
Nếu \(\left\{{}\begin{matrix}x-3< 0\\x-7>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>7\end{matrix}\right.\)(vô lý)
Vậy x = 4; 5; 6
@Vũ Việt Anh

15 tháng 8 2017

Vì (x-2)(5-x)>0 suy ra x-2 và 5-x cùng dấu

Trường hợp 1:

x-2 và 5-x cùng dương: Ta có x-2>0 suy ra x>2 (1)

5-x>0 suy ra x<5 (2)

Từ (1) và (2) suy ra 5>x>2

Trường hợp 2:

x-2 và 5-x cùng âm : Ta có x-2<0 suy ra x<2 (1)

5-x <0 suy ra x>5 (2)

Từ (1) và (2) ta thấy trường hợp trên vô lý

Vậy 5>x>2