Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
![](/images/avt/0.png?1311)
a) 2x^2 + 3 = 2x(x + 4) - 7
<=> 2x^2 + 3 = 2x^2 + 8x - 7
<=> 2x^2 - 2x^2 - 8x = - 7 - 3
<=> -8x = -10
<=> x = -10/-8 = 5/4
b) 4x^2 - 12x + 5 = 0
<=> 4x^2 - 2x - 10x + 5 = 0
<=> 2x(2x - 1) - 5(2x - 1) = 0
<=> (2x - 5)(2x - 1) = 0
<=> 2x - 5 = 0 hoặc 2x - 1 = 0
<=> x = 5/2 hoặc x = 1/2
c) |5 - 2x| = 1 - x
<=> \(\hept{\begin{cases}5-2x\text{ nếu }5-2x\ge0\Leftrightarrow x\ge\frac{5}{2}\\-\left(5-2x\right)\text{ nếu }5-2x< 0\Leftrightarrow x< \frac{5}{2}\end{cases}}\)
+) nếu x >= 5/2, ta có:
5 - 2x = 1 - x
<=> -2x + 1 = 1 - 5
<=> -x = -4
<=> x = 4 (tm)
+) nếu x < 5/2, ta có:
-(5 - 2x) = 1 - x
<=> -5 + 2x = 1 - x
<=> 2x + 1 = 1 + 5
<=> 3x = 6
<=> x = 2 (ktm)
d) \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}-\frac{2x+3}{x^2+x+1}\) ; ĐKXĐ: x # 1
<=> \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x+3}{x^2+x+1}\)
<=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
<=> 2(x^2 + x + 1) = (2x - 1)(2x + 1) - (2x + 3)(x - 1)
<=> 2x^2 + 2x + 2 = 2x^2 - x + 2
<=> 2x^2 - 2x^2 + 2x - x = 2 - 2
<=> x = 0
mạn phép vô đây để kiếm câu trả lời
\(2x^2+3=2x\left(x+4\right)-7\)
\(< =>2x^2+3=2x.x+4.2x-7\)
\(< =>2x^2+3=2x^2+8x-7\)
\(< =>2x^2+3-2x^2=8x-7\)
\(< =>\left(2x^2-2x^2\right)-8x=-7-3\)
\(< =>-8x=-10< =>8x=10\)
\(< =>x=10:8=\frac{10}{8}=\frac{5}{4}\)
![](/images/avt/0.png?1311)
a) \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)ĐKXĐ : \(x\ne1;-3\)
\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x^2+6x+4}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-7x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow2x^2+6x+4=2x^2-7x+5\)
\(\Leftrightarrow2x^2+5x+4-2x^2+7x-5=0\)
\(\Leftrightarrow12x-1=0\)
\(\Leftrightarrow x=\frac{1}{12}\)( thỏa mãn ĐKXĐ )
b) c) tương tự
![](/images/avt/0.png?1311)
\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)
![](/images/avt/0.png?1311)
a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)
\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x=\frac{3}{2}\)
b) làm tương tự nhé
![](/images/avt/0.png?1311)
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)
Có : \(\left(x^2-x\right)^2\ge0\)
\(\left(x-1\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(x^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)
Vậy phương trình vô nghiệm.(ĐPCM)
Lớp 8 không làm thế.
\(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)
\(\Leftrightarrow\left[\left(2x-1\right)+\left(2x+1\right)\right]\left[\left(2x-1\right)-\left(2x+1\right)\right]=4\left(x-3\right)\)
\(\Leftrightarrow\left(4x\right)\left(-2\right)=4\left(x-3\right)\)
\(2x=-x+3\Rightarrow x=3\)
Đáp số: x=3
\(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)
\(\Leftrightarrow\left(2x^2-2x.1+1^2\right)-\left(2x^2+2x.1+1^2\right)=4x-12\)
\(\Leftrightarrow2x^2-2x+1-2x^2+2x-1-4x=-12\)
\(\Rightarrow-4x=-12\Rightarrow x=3\)
Vậy.....................................