Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](/images/avt/0.png?1311)
Gọi nghiệm nguyên của P(x) là: k
ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0
k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)
ta có: P(1)=a+b+c+dP(1)=a+b+c+d
P(0)=dP(0)=d
mà P(1); P(0) là các số lẻ
=> a+b+c+d và d là các số lẻ
mà d là số lẻ
=> a+b+c là số chẵn
Từ (*) => k thuộc Ư(d)
mà d là số lẻ
=> k là số lẻ
=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn
⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn
=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)
mà a+b+c là số chẵn
⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn
Từ (*) => d là số chẵn ( vì d là số lẻ)
=> P(x) không thể có nghiệm nguyên
![](/images/avt/0.png?1311)
Ko biết là bạn có cần nữa ko.
Nhưng mình vẫn trả lời cho những bạn khác đang cần.
Do P(0) và P(1) lẻ nên ta có:
P(0)=d=> d là số lẻ
P(1)=a+b+c+d => a+b+c+d là số lẻ
Giả sử y là nghiệm nguyên của P(x). Khi đó:
P(y)=ay^3+by^2+cy+d=0
=>ay^3+by^2+cy=-d
Mà d là số lẻ
=>y là số lẻ
Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)
=a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)
=a(y^3-1)+b(y^2-1)+c(y-1)
Do y là số lẻ=>P(y)-P(1) là số chẵn(1)
Mà P(y)-P(1)= 0-a+b+c+d
=-a-b-c-d
Do a+b+c+d lẻ
=>-a-b-c-d lẻ
Hay P(y)-P(1) là số lẻ(2)
Vì (1) và (2) mâu thuẫn
=> Giả sử sai
Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)
![](/images/avt/0.png?1311)
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
![](/images/avt/0.png?1311)
Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555
![](/images/avt/0.png?1311)
![](/images/avt/0.png?1311)
Gọi nghiệm nguyên của P(x) là: k
ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0
k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)
ta có: P(1)=a+b+c+dP(1)=a+b+c+d
P(0)=dP(0)=d
mà P(1); P(0) là các số lẻ
=> a+b+c+d và d là các số lẻ
mà d là số lẻ
=> a+b+c là số chẵn
Từ (*) => k thuộc Ư(d)
mà d là số lẻ
=> k là số lẻ
=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn
⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn
=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)
mà a+b+c là số chẵn
⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn
Từ (*) => d là số chẵn ( vì d là số lẻ)
=> P(x) không thể có nghiệm nguyên
Xét đa thức P(x)=ax3+bx2+cx+dP(x)=ax3+bx2+cx+d
⇒P(0)=d⇒P(0)=d
P(1)=ax+bx+c+dP(1)=ax+bx+c+d
Giả sử tồn tại tại số nguyên kk là nghiệm của đa thức P(x)P(x) nên P(k)=0P(k)=0
+) Với k là số chẵn
⇒P(k)−d=ak3+bk3+ck⇒P(k)-d=ak3+bk3+ck là số chẵn
Mà P(k)−d=P(k)−P(0)=−P(0)P(k)-d=P(k)-P(0)=-P(0) là số chẵn
⇒k⇒k là số chẵn (loại) (1)
+) Với k là số lẻ
⇒P(k)−P(1)=a(k3−1)+b(k2−1)+c(k−1)⇒P(k)-P(1)=a(k3-1)+b(k2-1)+c(k-1)
Vì kk là số lẻ nên k3−1;k2−1;k−1k3-1;k2-1;k-1 là các số chẵn
⇒P(k)−P(1)⇒P(k)-P(1) là số chẵn
⇒P(1)⇒P(1) là số chẵn
⇒k⇒k là số lẻ (loại) (2)
Từ (1), (2)
⇒⇒ Không tồn tại số nguyên kk sao cho P(k)=0P(k)=0
⇒P(x)⇒P(x) không thể có nghiệm là số nguyên (đpcm)
Gọi nghiệm nguyên của P(x) là: k
ta có: \(ak^3+bk^2+ck+d=0\)
\(k.\left(ak^2+bk+k\right)=-d\)( *)
ta có: \(P_{\left(1\right)}=a+b+c+d\)
\(P_{\left(0\right)}=d\)
mà P(1); P(0) là các số lẻ
=> a+b+c+d và d là các số lẻ
mà d là số lẻ
=> a+b+c là số chẵn
Từ (*) => k thuộc Ư(d)
mà d là số lẻ
=> k là số lẻ
=> \(k^3-1;k^2-1;k-1\)là các số chẵn
\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn
\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)
mà a+b+c là số chẵn
\(\Rightarrow ak^3+bk^2+c\) là số chẵn
Từ (*) => d là số chẵn ( vì d là số lẻ)
=> P(x) không thể có nghiệm nguyên